
Implementation of a Grid Computation Toolkit for
Design Optimisation with Matlab and Condor

Gang Xue, Matthew J. Fairman, Graeme E. Pound, and Simon J. Cox

Southampton Regional e-Science Centre,
School of Engineering Sciences,

University of Southampton,
Highfield, Southampton, SO17 1BJ, UK

{ gx, mjf, gep, sjc} @soton.ac.uk

Abstract. The process of design search and optimisation is characterised by its
computationally intensive operations, which produce a problem well suited to
Grid computing. Here we present a Grid enabled computation toolkit that
provides transparent and stable access to Grid compute resources from Matlab,
which offers comprehensive support for the design optimisation processes. In
particular, the access and integration of the Condor resource management
system has been achieved by using the toolkit components that are enabled by
Web service and service enhancement technologies. The use of the
computation toolkit for a four-dimensional CFD parameter study with Matlab
and Condor is considered as an exemplar problem.

1. Introduction

Engineering design search and optimisation [1] is the process whereby engineering
problems are modelled and analysed to yield improved designs. This process involves
identifying design parameters that the engineer wishes to optimise, computing a
measure of the quality of a particular design (the objective function) using an
appropriate model, and using a number of design search algorithms to generate
additional information about the behaviour of a model over the parameter space, as
well as to optimise the objective function to improve the design quality. It is
potentially computationally intensive, as lengthy and repetitive calculations of the
objective function with regard to the design variables may be required.

The demand for compute resources by the design optimisation process can be
well satisfied by the adoption of Grid computing technologies. Grid computing
provides the infrastructure and technologies to enable large-scale resource sharing and
the construction of Virtual Organisations (VOs) that address various science and
engineering problems [2]. When applied in design optimisation, it allows the process
to discover and access resources from heterogeneous environments in a transparent
and consistent manner for the required compute tasks. An important aspect of the use
of Grid technology for this purpose is to establish links between the design
optimisation process and various compute resource management systems, which
organise and manage most of the compute resources on the Grid. Notable examples of
such systems include Globus [3], Condor [4], Maui [5] and UNICORE [6]. In our

previous work [7], access to the Globus system has been provided to Matlab users by
building on the Java CoG toolkit [8]. Here we focus on the integration into Matlab of
another important target, the Condor system, using an approach more strongly
grounded in Web service technologies.

Condor is a resource management system that creates a High-Throughput
Computing (HTC) environment by harnessing the power of UNIX and NT clusters and
workstations [9]. Whilst it can manage dedicated clusters, it can also exploit pre-
existing resources under distributed ownership, such as computers sitting on people’s
desks. For the design optimisation process, Condor provides a robust computational
environment, which is able to find resources with specific requirements, carry out the
compute operations, and manage the computation jobs for the process. The HTC style
of Condor also suits the need of design optimisation, which can yield better results
with further calculations.

The integration of Grid resource management systems with the design
optimisation process is mainly based within the Matlab environment [10], which is
selected as the interface to the Geodise PSE [7]. The Matlab package provides a
fourth generation language for numerical computation, built-in math and graphics
functions and numerous specialised toolboxes for advanced mathematics, signal
processing and control design. It is widely used in academia and industry for
algorithm prototyping, and for data visualisation and analysis. From version 6.5
Matlab also contains a number of Just-In-Time (JIT) acceleration technologies to
improve the performance of native Matlab code.

In order to facilitate access to compute resources on the Grid, especially the
Condor system, for users in Matlab and potentially other problem solving
environments, a computation toolkit has been developed in the form of a set of client
utilities and replaceable middleware components. The toolkit adopts a layered, highly
flexible and easily configurable structure, which allows using a consistent user
interface to access different compute resource systems with the help of corresponding
middleware components. In particular, a middleware component based on Web
service technology has been constructed to expose Condor as a Grid service, and
hence make it accessible to the toolkit users.

 In the rest of the paper, we first focus on the design and implementation of the
computation toolkit, including the Web service interface to the Condor system. We
then demonstrate the application of the toolkit in the Matlab environment for
engineering design optimisation problems.

2. The Computation Toolkit

The computation toolkit provides users with a set of basic functions to perform Grid
based computation tasks, which are described below together with the technologies
behind and the design of the toolkit.

2.1 Functions for Grid based Computation

In our computation toolkit, a number of functions are implemented both in the form of
a low-level Java [11] class library, and a set of high-level commands for the Matlab

environment, which enable users to query the resources, submit and manage the
compute jobs, perform data transmission, and configure security settings. The Java
class library provides mappings between the APIs and the compute functions. It is
therefore possible to perform a Grid based compute operation programmatically. The
commands for Matlab users listed in Table 1 are written in the interpretive Matlab
language, so that the compute functions are presented in a manner consistent with the
behaviour and syntax of the Matlab environment. The commands can be used to start
compute operations based on interactive user inputs, or directly on script files.

The grid_createcredential command needs to be called before any
other commands in the toolkit can be used. It sets up the user credentials according to
the security requirement policy of the target compute resource. The user credential
can be as simple as a username/password pair, or as complicated as a PKI (Public Key
Infrastructure) [12] based user certificate. When all compute operations are finished,
the grid_destroycredential command is used to disable the user credential,
so that it won't be misused or stolen.

The grid_jobreqest, grid_sendfiles and grid_startjob
commands represent the major steps in starting a compute job submission process.
Users start the compute tasks with requests to the target resources for job submission.
Once accepted, the job files are delivered to the resources using the data transfer
command. Users then send out instructions to start the computation. In addition, a few
job management commands are also provided to enable users to monitor and manage
the running of jobs. Once the jobs are finished, job results can be easily retrieved
using the grid_retrievefiles command.

Table 1: Compute Commands

grid_destroycredential

Function Name

grid_createcredential

grid_jobrequest

grid_startjob

grid_killjob

grid_getstatus

grid_listjobs

grid_sendfiles

grid_retrievefiles

grid_jobsubmit

Description

Loads the user credential to the toolkit for
compute operations

Destroys the user credential stored by the toolkit

Requests the submisson of a compute job with
specification for the compute resources and description
of the job. If accepted, a job handle is returned.

Starts the submitted job identified by a job
handle.

Terminates the job identified by the job handle.

Queries the status of submitted jobs identified by
the job handles.

Returns job handles for all jobs submitted to the
target resource that belong to the user.

Uploads the job files required for job execution to
the target resource.

Retrieves all result data/files generated by the
finished job identified by a job handler.

Automates the process of job request, job files
transfer, and job start.

2.2 Design of the Computation Toolkit

One of the most important features of Grid technologies is to provide transparency in
accessing computational resources spread across the Grid. It is important because of
the heterogeneity of the Grid environment. For instance, compute resource systems
that can be targeted by the design optimisation processes include Globus, Condor, and

UNICORE. Each of them has a different user interface, incompatible security policy,
and diverse workflow model. Traditionally, separate client packages would be needed
to access these different resources, which is clearly unscalable and not ideal for
system integration. Moreover, these tightly bound client packages are less adaptable
to potential changes made by the target systems, and would force frequent
modification to design optimisation applications.

To provide the essential transparency, the computation toolkit has been
implemented in a distinctive structure, which separates the user interface from the
underlying message processor that is responsible for interactions with different
remote resources based on various protocols. The user interface is an API that
represents the basic semantics of compute operations and is designed to be simple but
stable. In contrast, the message processor is much more dynamic and powerful. It is
implemented as two chains of filters for input and output message processing. Each
filter is responsible for processing a specific message part, or even the entire message
based on the protocol it is responsible for. At the end of the chains, there is a
communication handler, which is responsible for direct interactions with the compute
resource or compute service middleware. By using Java reflection, the filter chains
are dynamically constructed at the runtime based on the information loaded from a
configuration file, which is detached from the client applications and can be easily
modified. It is therefore possible to access different resource systems or adapt to
changes by loading different set of filters.

Figure 1 shows the implementation of the file upload functionality when
accessing the Condor service. The interaction is primarily based on the SOAP
protocol [13], and needs to conform to the security regulation set by the service. For
data transmission, the service uses DIME [14]. HTTP is used as the underlying
communication protocol. Accordingly, a SOAP output filter, a Security handler and a
DIME builder are loaded in turn to the output chain. Since the response is expected in
plain SOAP format, only a SOAP input filter is loaded to the input chain. And at the
end of the chains, an HTTP handler is loaded to handle the actual message exchanges.

In
te

rf
ac

e
A

P
I

in
 J

av
a

"g
ri

d_
se

nd
fi

le
s"

 c
om

m
an

d

�����������
	�
��

�
 ��
�� �

��
�����
����

Output Chain

SO
A

P
O

ut
pu

t

W
S-

Se
cu

ri
ty

D
IM

E

��
�� � ��� ��

SO
A

P
In

pu
t

Input Chain

����������������������������� � � � ! " # $ % � �� � � � ! " # $ % � �� � � � ! " # $ % � �� � � � ! " # $ % � �
& ' (& ' (& ' (& ' (

Figure 1: Implementation of Data Upload with the Message Filter Chains

The flexibility brought by the structure of the computation toolkit allows

different compute resource systems accessible in a client-server mode to be integrated
into the toolkit. Apart from the middleware component for the Condor system

provided in the current implementation, we will also construct message filters based
on our previous work on Globus client tools, so that the Globus system can also be
accessed using the toolkit.

3. The Web Service Enabled Interface to Condor

The computation toolkit consists of a set of Web service based middleware
components that expose the Condor system. Several enhancements have been applied
in addition to the standard Web service technologies to provide features required for
Grid based operations. We have also exploited features of Condor and Web service
inspection technology to support compute tasks with specific requirements on the
resources.

3.1 The Web Service Interface

The Web service enabled interface to the Condor system has been constructed in
order to achieve programmatic, platform and language neutral access to the resources
managed by Condor. It provides mappings between the computation toolkit functions
and the resource management mechanisms of Condor. The interface is primarily an
interpreter between XML messages representing the compute operations and the
ClassAd language of Condor. It also hides from the users details of resource
management that are proprietary to Condor, so as to achieve the desired transparency.

 In addition to interactions with Condor, the service also implements general Grid
service functions that are not provided by the Condor system, such as management of
security and process status. Furthermore, the service has also adopted several
enhancements from future Web service technologies, which are described in detail in
the following section.

3.2 Enhancements to the Service for Compute Operations

The standard Web services technology collection, which includes XML, SOAP,
WSDL and UDDI, has not supplied a solution to the management of service security.
To address this problem and make the service compatible with common Grid security
management practise such as GSI, we have employed the WS-Security specification
in the Condor service implementation. WS-Security [15] is a maturing technology for
Web service security management. It extends the simple structure of SOAP to
establish a standard security mechanism on the message level, which is independent
of the underlying transportation methods. Since WS-Security focuses mainly on the
infrastructure, rather than detailed security techniques such as authentication and
encryption, it allows established security solutions, including Kerberos [16], Public
Key Infrastructure (PKI), and GSI [17] to be integrated so that they can be applied to
Web services in a standard and consistent manner.

In the Condor service, we have deployed PKI based asymmetric encryption in
order to keep message confidentiality and perform user authentication. The exchanges
of credential information, i.e. the X.509 certificates that contain public keys, are
carried out following the WS-Security definition. In addition, we will also apply

XML digital signature [18] to the service messages, as proposed by WS-Security, so
as to achieve message integrity.

Another problem about interfacing Condor with Web service is the degraded
performance in data transfer. Traditionally, data transfer with SOAP is based on the
Base64 encoding, which imposes heavy costs due to the serialisation/deserialisation
of the Base64 strings. We address this problem in the Condor service by exploiting a
recently proposed data transfer format named Direct Internet Message Encapsulation
(DIME). DIME defines a MIME-like message format in which variously typed data
that does not fit expediently or efficiently into XML can be directly contained and
transmitted along with the standard SOAP messages. Significant improvement to the
performance on data transfer can be achieved by using DIME, as overheads for data
conversion are avoided. Test results for this have been demonstrated in [19].

The enhancements to the Condor service have been implemented with the help of
Microsoft’s recently released WSE1.0 [20], which provides sound support for several
emerging Web service technologies based on the .NET framework. Corresponding to
the service enhancements, message filters for the client tools have also been
constructed using related Java technologies [21] [22].

3.3 Discoveries and Access of Resources with Special Capabilities

We define resources to encompass compute facilities with certain features, e.g.
memory, processor, disk capacities, database/archive facilities, and also specialist
software environment or licensed applications. Design optimisation requires access to
all of these resource types at various stages of the process. It is therefore necessary for
the users to be able to discover all resources on demand, and manage access to these
resources in a consistent way to familiar requests for particular compute capabilities.

Our service interface to Condor provides the solution to this problem by
combining features of Condor and inspection technology for Web services. The
Condor system provides a convenient method for the discovery of resources with
special capabilities in the Condor pool. When a computer joins the Condor pool, it
declares its capabilities by adding corresponding attributes to its Condor system
configuration file. These attributes will then be reflected in the information generated
by the resource status query performed by Condor, which is passed on to the Web
service. The service will therefore be able to make the discovery by identifying the
target attributes. Figure 2(a) shows the Condor status query results for a machine that
supports Java and MPI.

Additional regulations that need to be enforced for computing on special
resources can be presented in XML Schema and WSDL file that extends the original
ones of the Condor service. Once the service makes the discovery, it follows the
convention defined by the WS-Inspection specification [23] to locate the WS-I
documents on the resources, which point to the extended schema and WSDL files.
The service will then use the extended service definition to process the incoming
requests. The entire process is illustrated in Figure 2(b).

This model of resource discovery and inspection can be extended to suit the
situation where resources are presented to the Web service as Web service themselves.
In that case the sub-services are registered directly with the interface service, which
becomes a service broker in addition to its original functions.

)�*�+�,�*�-)�*�+�,�*�-)�*�+�,�*�-)�*�+�,�*�-
.�/�0 1�2 3.�/�0 1�2 3.�/�0 1�2 3.�/�0 1�2 3

.�2 -�4�5 6�2.�2 -�4�5 6�2.�2 -�4�5 6�2.�2 -�4�5 6�2
)�7�5 2 +�1)�7�5 2 +�1)�7�5 2 +�1)�7�5 2 +�1

8 9 : ; 9 :

Condor
Service

Request
Processor

<�2�= >�2�0�1<�2�= >�2�0�1<�2�= >�2�0�1<�2�= >�2�0�1

.�2 ?�-�6 @.�2 ?�-�6 @.�2 ?�-�6 @.�2 ?�-�6 @
1

A B
C D E
F

A B
C D E
F

A B
C D E
F

A B
C D E
F2

G H I J K L M N O P Q R KG H I J K L M N O P�Q R KG H I J K L M N O P Q R KG H I J K L M N O P�Q R K
S R O T U N K PS R O T U N K PS R O T U N K PS R O T U N K P

3 Inspect

H N V W�Q O NH N V W�Q O NH N V W�Q O NH N V W�Q O N
S N L O V�Q M P Q R KS N L O V Q M P�Q R KS N L O V�Q M P Q R KS N L O V Q M P�Q R K

<�2�= >�2�0�1<�2�= >�2�0�1<�2�= >�2�0�1<�2�= >�2�0�1

4 Load

 (a) (b)

Figure 2: (a) Discovering Resources of Special Capabilities in Condor
 (b) Process of Special Capability Discovery through the Service

4. The Computation Toolkit Application Exemplar

To demonstrate the possible use of our Grid-enabled computation toolkit in Matlab,
we choose a simple problem of fluid dynamics, which is a parameter study of the
fluid dynamics of a 2D parameterised geometry of the nacelle for an aircraft engine.
A suitable objective function was calculated across four design variables which
describe curves on the upper and lower surface of the nacelle. In this example, each
simulation is set up as a compute task, which is submitted to a Condor managed
resource from Matlab using the toolkit command, as shown in Figure 3(a).

Figure 3(b) shows the results of 648 simulations that were performed. The jobs
were distributed by the Condor system over a cluster of 12 NT nodes. A parameter
study such as this allows the engineer to easily evaluate the impact of different design
variables upon the quality of a design.

Once an engineer has developed a Matlab script based on our toolkit for design
studies like this, improvements to the robustness and reliability of the underlying
Condor service, or additional Condor-enabled resources and capabilities can be
exploited in a seamless and transparent way without further modification to the script.

5. Conclusion and Future Work

The significant demand for computation resources in the design optimisation process
can be satisfied in a transparent way using Grid computing. The computation toolkit
presented in this paper facilitates access to computation resources, in particular the
Condor system, from an engineering PSE such as Matlab. The implementation of the
toolkit is based on a highly flexible structure and a few future Web service
technologies. As an exemplar, we have demonstrated the use of the toolkit for a
simple CFD design optimisation problem. Future work on the toolkit will mainly
focus on the implementation of filter and middleware components for the access of
different computation resources.

Figure 3: (a) Starting Grid Computation Tasks Using the Computation Toolkit
 (b) Visualised Result of a Four Dimensional CFD Parameter Studies

Acknowledgements

This work is supported by the Geodise e-Science pilot project (UK EPSRC GR/
R67705/01). We thank the authors of the Condor system at the University of
Wisconsin, Madison.

References

[1] The Geodise Project. http://www.geodose.org
[2] I. Foster, C. Kessleman, and S. Tuecke. The Anatomy of the Grid: Enabling Scalable Virtual

Organisations, International Journal of Supercomputer Applications, 15(3):200-222, 2001
[3] The Globus Project. http://www.globus.org
[4] The Condor Project. http://www.cs.wisc.edu/condor/
[5] The Maui Scheduler. http://supercluster.org/maui/
[6] UNiform Interface to COmputing Resources. http://www.unicore.de/
[7] G. E. Pound, M. H. Eres, et al. A Grid-Enabled Problem Solving Environment (PSE) for Design

Optimisation within Matlab. Proceeding of IPDPS 2003, Nice, France.
[8] Commodity Grid Kits. http://www.globus.org/cog/
[9] Miron Livny, and the Condor Team. Condor User Manual. http://www.cs.wisc.edu/condor
[10] Matlab 6.5. http://www.mathworks.com
[11] Java 2. Sun Microsystems Inc., http://java.sun.com
[12] Public Key Infrastructure. http://www.ietf.org/html.charters/pkix-charter.html
[13] Simple Object Access Protocol. http://www.w3.org/2000/xp/Group/
[14] DIME. http://www.ietf.org/internet-drafts/draft-nielsen-dime-02.txt
[15] The WS-Security Specification. http://www.ibm.com/developerworks/library/ws-secure/
[16] Kerberos: The Network Authentication Protocol. http://web.mit.edu/kerberos/www/
[17] Grid Security Infrastructure. http://www.globus.org/security/
[18] The IETF/W3C XML Signature Work Group. http://www.w3.org/Signature/
[19] G. Xue, G. E. Pound, S. J. Cox. Performing Grid Computation with Enhanced Web Service and

Service Invocation Technologies. Proceedings of ICCS 2003, Melbourne, Australia.
[20] Web Services Enhancements 1.0 for Microsoft .NET. http://msdn.microsoft.com/
[21] Java DIME Library v1.0.2. http://onionnetworks.com/dime/javadoc/
[22] Java Cryptography Extension (JCE). http://java.sun.com/products/jce/
[23] Web Service Inspection Language 1.0. http://www.ibm.com/developerworks/Webservices

/library/ws-wsilspec.html

